
pTASC: Trustable Autonomous Secure
Communications

Patrícia R. Sousa
DCC-FCUP/CRACS-INESC TEC

Porto, Portugal
psousa@dcc.fc.up.pt

André Cirne
DCC-FCUP/CRACS-INESC TEC

Porto, Portugal
andre.cirne@fc.up.pt

João S. Resende
DCC-FCUP/CRACS-INESC TEC

Porto, Portugal
jresende@dcc.fc.up.pt

Rolando Martins
DCC-FCUP/CRACS-INESC TEC

Porto, Portugal
rmartins@dcc.fc.up.pt

Luís Antunes
DCC-FCUP/CRACS-INESC TEC

Porto, Portugal
lfa@dcc.fc.up.pt

ABSTRACT
The number of devices connected to the Internet has been in-
creasing exponentially. There is a substantial amount of data
being exchanged among numerous connected devices. The
added convenience brought by these devices spans across
multiple facets of everyday life, such as drivers reporting
an accident through dash cams, patients monitoring their
own health, and companies controlling the safety of their
facilities. However, it is critical to increase safety and privacy
across the data generated and propagated by these devices.
Previous works have focused mainly on device management
and relied on centralized solutions namely Public Key Infras-
tructure (PKI). This paper describes a novel mechanism that
ensures secure autonomous communication between Inter-
net of Things (IoT) devices, while using a completely decen-
tralized solution that mitigates the classical single points-of-
failure problem. This is accomplished by a new peer-to-peer
protocol using Short Authentication Strings (SAS), in which
verification is made through a Limited-Location Channel
(LLC).

CCS CONCEPTS
• Security and privacy→ Network security;

KEYWORDS
IoT, Location-Limited Channel, Network security, Embedded
Systems, Security and Privacy

1 INTRODUCTION
As new scenarios and threads emerge, along with the evo-
lution of cyberspace and the number of Internet-connected
devices, security also has to evolve. Due to the explosion

ICDCN ’19, January 4–7, 2019, Navi mumbai, India
© 2019

of the number of these interconnected devices, there are
increasing requirements for security and privacy.
IoT is a technological concept where all the devices of

our daily lives are connected to the Internet, such as clocks,
appliances or even clothes, acting in an intelligent and senso-
rial manner [16]. When the devices are linked together and
to the Internet, they can make use of additional resources
towards achieving newer capacities.

These devices are limited in computational resources and,
often, are connected to a network that does not have access
to the Internet, or only have access to an intermittent ad-hoc
mesh network. These restrictions create additional problems
when scaling up the number of devices, such as the insuffi-
cient bandwidth to maintain these devices interconnected.
In any circumstance, the necessity of securely sharing infor-
mation [25] is one of the open problems in IoT and is the
main focus of this work.
The exchange of data/information securely is not novel.

There are some solutions based on PKI [2], however, they
are not suitable for IoT. A PKI is a system that manages
certificates used in asymmetric encryption. Using this infras-
tructure, any device should be able to verify the integrity and
ownership of a public key. A problem normally associated
with PKIs is that they rely on a centralized entity that can
represent a single point of failure (SPOF).
Even with fault-tolerance, the infrastructure supporting

the PKI can potentially fail. Additionally, a PKI can also
become inaccessible due to the lack of network connection
between a device and itself.

To avoid this, we can consider a decentralized solution [22].
Besides that, the existence of an infrastructure dedicated to
a protocol is somehow incompatible with scenarios where
the devices are connected to an ad-hoc network, as they
can come and go over time, i.e., churn. So, to include all
these scenarios, a suitable system needs be supported by
the devices themselves, i.e, by implementing a peer to peer
protocol.



ICDCN ’19, January 4–7, 2019, Navi mumbai, India Patrícia R. Sousa et al.

In order to solve these restrictions, we have develop a new
protocol, based on the Z and Real-time Transport Protocol
(ZRTP) protocol [37], which is a key agreement protocol
used on the setup of a secure call on VoIP. Thus, we also
took into account the properties of Password Authenticated
Key Exchange by Juggling (J-PAKE) [19]. We based our pro-
posal on these protocols allowing the negotiation of secret
keys peer-to-peer, without requiring the participation of any
other device or a human interaction after the first communi-
cation/iteration, in order to provide secure peer-to-peer data
exchange.

1.1 Contributions
This work makes the following contributions:

• Design and implementation of a novel approach for
secure peer-to-peer data exchange focused on a home
environment;

• Completely decentralized solution, avoiding the SPOF
issue;

• Enhancement of cryptographic protocols: Our ap-
proach is based on some properties of J-PAKE and
ZRTP to secure the end-to-end data exchange;

• Use of Limited-Location Channel (LLC) to exchange
the SAS, and then, compare in both local clients auto-
matically. The use of this concept removes the need
for verbal and manual comparison with screens or
keyboards. This concept is based on proximity of
the ad-hoc network devices, that is, a secure pre-
authentication channel can be established by visual
or physical contact between the communication de-
vices [5]. This secure pre-authentication channel en-
ables devices to exchange their keys directly without
the need for public key and CA certificates. The use
of LLC is only needed for the first iteration, because
the following iterations rely on key continuity and
forward secrecy;

• Definition of a threat model with security analysis;
• Provisioning evaluation with runtime of the pTASC
system as compared to a PKI system, where the Online
Certificate status Protocol (OCSP) verification over-
head exists. We present the setup of the pTASC system
and the conditions of the experiments. In this paper,
we do not focus on comparisons at the data exchange
level (i.e., cipher times).

1.2 Premises
Due to the usage of LLC, this model is based on two assump-
tions: all participants are located in the same ad-hoc network;
and all the participants trust each other a priori. Therefore,
this type of model fits all scenarios that fall under these two

assumptions (in a home environment, for example) and does
not apply in any other scenario.

1.3 Outline
Section 2 presents the state of the art with some of systems re-
lated with our protocol. In Section 3, we present an overview
of the proposed system (pTASC) and characteristics of the
system.
This is followed by Section 4 that describes the imple-

mentation of pTASC. Section 5 describes a security analysis
including a definition of the threat model with several attack
scenarios, analyzing whether or not the attacks are mitigated
using our approach. Also, we present some theorems and
proofs of some of the attack scenarios.

In Section 6, we present results of the comparison of exe-
cution times between this system and a PKI system. Lastly,
Section 7 presents the conclusions of this work.

2 STATE OF THE ART
This section describes technologies or systems related to our
proposed solution.

2.1 ZRTP protocol
The ZRTP is a key agreement protocol used on VoIP. This
protocol is not based on digital certificates, but on the Diffie-
Hellman (DH) keys (also called shared secret keys). The DH
method is a specific encryption algorithm for key exchange
based on discrete logarithms. On the end of this key agree-
ment, it is possible to generate, through shared secrets a
master key, to create a Secure Real-time Transport Proto-
col (SRTP) Cryptographic Context and so, establish a SRTP
stream [6][37]. The DH algorithm alone, does not provide
protection against Man-in-the-Middle (MitM) attacks. In or-
der to authenticate both peers in the key exchange on ZRTP,
it is used a SAS, that is generated during the key negotiation
from the DH shared secrets. In the case of a MitM attack, the
devices will end up with different shared secrets and thus,
different SAS. If the SAS is the same, the communication
could be classified as secure, but, for this to happen, the SAS
needs to be accepted on the two devices by a user. When
a communication is classified as secure, the shared secrets
are saved, to produce new secure sessions on the future,
decreasing the computational effort and skipping the user
intervention on the comparison of SAS [37].

The ZRTPCPP [13] is an implementation of ZRTP on C++
constructed as a library that adds ZRTP support to the GNU
ccRTP stack. This library is able to runwithout other required
software, such as cryptographic libraries or local databases.
Documentation is clear and has a good support from the
community, but the mode of operation is more complicated,
because it is part of the GNU ccRTP.



pTASC: Trustable Autonomous Secure Communications ICDCN ’19, January 4–7, 2019, Navi mumbai, India

The GNU ccRTP [14] is an implementation of RTP. This
implementation has been created as an application-level pro-
tocol framework, giving liberty to the programmer for cus-
tomize a wide range of settings and aspects of the framework
behaviour.
The ZRTPCPP is restrictively a implementation of ZRTP

and delegates all things to the GNU ccRTP, which involves
communication, discovering peers and encryption. Currently,
this ZRTP implementation is being used by a VoIP applica-
tion (Silent Phone) [31] and an open source video conference
program (Jitsi) [21]. At a higher level of abstraction, the ZRT-
PCPP [13] implementation is based on, the ZrtpQueue class,
which is responsible for connecting the different components,
including the GNU ccRTP.
The ZrtpQueue is responsible by the management of the

ZRTP sessions, connecting the ZRTP with the user interface
by implementing the ZrtpUserCallback and manage the GNU
ZRTP CORE.

The GNU ZRTP CORE processes and implements the ZRTP.
Its construction respects a Facade design pattern [8], where
the Facade class is the Zrtp class. This initialize all parts of
the subsystem, including the produce of the hash chain, the
mechanism that enforces an attacker to choice a SAS string
and that avoid a birthday attack [37][29]. The Zrtp class
delegates the process of messages to a state machine, the
ZrtpStateClass, which is also responsible to track the state of
the protocol.

2.2 J-PAKE
The PAKE (Password-Authenticated Key Agreement) pro-
tocols are a recent addition to the cryptography literature.
Currently, the most sophisticated algorithms do not perform
key exchanges based on public key cryptography and allow
low-entropy passwords to be used. In [23], the three main
state-of-the-art PAKE protocols are discussed. In the same
paper, there are also two protocols that are more efficient
than the J-PAKE protocol, which were adopted as the de-
faults in OpenSSL. J-PAKE [19] [18] is based on a shared
password, which does not require a PKI or a third party
in order to establish a secure communication between two
parties. It uses an elliptic curve DH for the key agreement
and a Schnorr Non-Interactive Zero-Knowledge (NIZK) sig-
natures [17] proof mechanism to authenticate two peers
and establish a shared secret between them based on a pass-
phrase. There are some services that still use J-PAKE, such
as the Pale MoonWeb-Browser, the lightweight API in Boun-
cycastle (1.48 and onwards), and the Thread (IoT wireless
network protocol). This protocol was also supported by Fire-
Fox Sync, OpenSSH, and OpenSSL, but was removed after

2014. There are several known J-PAKE issues, already pub-
lished by Mohsen Toorani [35]. This paper presents an anal-
ysis of J-PAKE, as used by Firefox Sync, and has identified
vulnerabilities in it. J-PAKE is vulnerable to a password com-
promise impersonation attack and has other shortcomings
with respect to replay and Unknown Key-Share (UKS) at-
tacks. Also, according to the same paper, J-PAKE has also
been included in OpenSSL and OpenSSH, but problems were
reported during implementation [24].

2.3 Device Pairing Using Short
Authentication Strings

Device Pairing Using Short Authentication Strings [11] is
a two-device pairing mechanism based on the agreement
and checking of a secret’s authenticity using an SAS. This
protocol consists of three phases: discovery, agreement, and
authentication. When the pairing service starts, the server
starts publishing the chosen instance name. The client will
discover that name and the corresponding connection pa-
rameters [11]. After the server is discovered, the client and
server use a TLS session which allows them to agree on a
shared secret using a cryptographic protocol that produces
an SAS. After this, there is an authentication phase, used
to validate the pairing through an SAS. In this phase, the
comparison of the SAS is made through a manual verifica-
tion, i.e., the user has to verify that both devices display the
same string. If, instead, the server and client support Quick
Response (QR) codes, then the server displays a QR code
with the encoding of the SAS, and the client is capable of
scanning the value of the SAS and comparing it to the locally
computed value.

2.4 Ad-hoc Authentication
There are some works in the literature that describe authenti-
cation models for ad hoc networks.Nidal Aboudagga et al. [1]
has presented a document with a taxonomy and research
issues in the authentication protocols for ad-hoc networks.
We describe in more detail some similar to our approach.
Asokan, N and Ginzboorg, Philip [4] presented a key agree-
ment protocol in ad-hoc networks which is based on PAKE
and a location-based key agreement to authenticate through
a limited channel such as Bluetooth. However, such protocol
does not focused on IoT and does not have key continuity
feature that is a good application in this context, as key conti-
nuity allows devices to move away after the first pairing and
continuously have secure communications on the following
connections.

Additionally, there a vast literature related with LLC as [5]
that presents new schemes for peer-to-peer authentication
in ad-hoc wireless networks. Also, the authors describe



ICDCN ’19, January 4–7, 2019, Navi mumbai, India Patrícia R. Sousa et al.

how to use demonstrative identification to perform pre-
authentication over LLCs. Amir Spahić [33] presents an au-
thentication mechanism (pre-authentication phase) which
uses context information through LLC using Infrared. Serge
Vaudenay [36] presents a concept that authenticates a short
string, the SAS, through an extra insecure channel. This
concept is similar to our proposal, however, this is based
on the use of a narrow-band authentication channel. An-
other proposal [10] is based on a new LLC using biometrics.
The protocol efficiently calculates a shared secret key from
biometric data using quantization and cryptanalysis. The au-
thors use grip pattern based biometrics as a location limited
channel to achieve pre-authentication in a protocol that sets
up a secure channel between two handheld devices.

3 PTASC OVERVIEW
pTASC is based on a DH key exchange to overcomes the com-
plexity of PKI systems or any trusted third party, and also,
to make a decentralized solution. However, DH alone can-
not ensure authentication, and it has a MitM problem [30].
Zimmermann P. et al. [37] proposed a solution to this, by
allowing the detection of MitM attacks through displaying
a SAS for the users to read and verbally compare over the
phone in Voice Over Internet Protocol (VoIP) communica-
tions. This solution (ZRTP) lacks the possibility of adapting
this protocol for data. In a protocol adapted to data, it cannot
be used the comparison through voice because there is no
audio or secure channel established where we can exchange
the SAS securely.
This protocol needs authentication to prevent a MitM

attack during the exchange of SAS. To solve this issue, we use
an adaptation of the LLC concept. The idea of this concept is
to create an extra channel (secure and authenticated channel)
to exchange the SAS securely, without being vulnerable to a
MitM attack. Then, the SAS is compared locally on the both
client sides. For the exchange, we use Infrared as a LLC. As
Infrared is more limited in terms of range, we can ensure
devices wanting to exchange information have to be in the
close proximity of each other. This is a secure paradigm that
is valid in two scenarios: all participants are located in the
same room; and all the participants trust each other a priori.

This decision to use LLC is also due to the fact that devices
in the IoT often do not have a screen to show a pairing in-
formation, or at least users cannot interact with this screen
easily, so it may be necessary to have a keyboard or another
interface. For this reason, pTASC automates all the necessary
operations that otherwise would require manual interven-
tion.
Figure 1 presents the communication scheme between

two devices (A and B) through pTASC. The communications

Figure 1: pTASC overview

scheme starts with both of the devices (A and B) exchang-
ing HELLO and HELLOack messages (acknowledgement of
receipt of the HELLO message) in steps F1 to F4. In these
HELLO and HELLOack messages, the identification of both
of the two devices A and B are revealed to each other. The
identification is generated using a Pseudo Random Number
Generator (PRNG) and this identification is validated in this
phase. After this first exchange of messages, the key agree-
ment exchange can begin with a Commit message in step
F5 from the device B to the device A. The scheme shown
assumes that the device B is the initiator. There are two ap-
proaches that can now be carried out in order to agree a key
between the device B and the device A:

• DH mode: pTASC endpoints exchange a new shared
secret through the DH exchange;

• Pre-shared mode: In this mode, the DH calculation is
omitted by the endpoints, as it is assumed that there
exists a known shared secret from a previous session.



pTASC: Trustable Autonomous Secure Communications ICDCN ’19, January 4–7, 2019, Navi mumbai, India

However, DHPart1 and DHPart2 messages 1 are still
exchanged to determine which shared keys should
be used. Instead of DH values (hvi and pvr), the end
points use nonces, along with the retained secret keys,
to derive the key material [34].

After this phase, the Infrared component is used to pri-
vately exchange the SAS and the comparison is made locally
on both sides. Then, it is possible to send a Confirm mes-
sage from both devices indicating that both have accepted
and verified the SAS. Finally, the protocol is ready to start
sending data in this secure session.
pTASC takes advantage of some additional security and

privacy properties, as the forward secrecy, in order to guar-
antee confidential communication in the future. This means
that when the two devices A and B perform multiple connec-
tions at different times with each other, the protocol rotates
the keys between each ones of the sessions so that the same
key is not used in a following session. This way, all the com-
munications keys are different. At this point, an identifier
file caches symmetric key material used to compute secret
session keys, and these values change with each session. If
an attacker gets access to the local seed to derive the fu-
ture and current keys, the attacker will not be capable of
reproducing any of the previous exchanges of information.
In other words, if a single communication is compromised
(say the session key is "leaked"), this does not compromise
the confidentiality of all of the communications prior to it.
This way, pTASC is able to guarantee additional protection
in communication because, even if the users do not bother
with SAS, there is still fairly decent authentication against a
MitM attack, based on a form of key continuity.

The negotiation of the keys generates a sequence of letters
and numbers, whose size can be defined and which must be
equal at both ends. Any attempt to capture and decrypt the
voice will cause the sequences to be different (a sequence is
a mathematical function derived from the initial key of both
ends, so, any difference in the key will generate different
values). The key continuity is often confused with forward
secrecy. However, the idea of key continuity is that a key is
used only once, but is used as seed for the following seed.
That is, the old key is used to generate the new one, i.e.,
the complexity of the key becomes greater with each use.
This key continuity solution is a good option for IoT devices
because the number of devices are increasing and automatic
provisioning of the session keys is necessary, so there is no
need for provisioning individually the session key to each
ones of the devices A and B, beforehand.

Based on this overview, we highlight two main character-
istics of our system:

1Messages where the DH public values are exchanged

Usability
Some secure proposals do exist, but, in order to apply them,
many procedures are necessary, and many of them require
previous key changes. Note that, the exchange of keys by
unsecured means (email for example) compromises all of
the security of the process. The system proposed in this
work is easy to use. In the case of J-PAKE, for example, its
use in Firefox Sync is less easy to use, as it requires that
the SAS be written in both devices to provision these two
devices. Also, in ZRTP, the protocol needs to exchange the
SAS verbally and then, compare it on the phone. With LLC,
we can exchange the SAS securely and privately between
the peers and then, compare it locally in both sides.

Decentralized
The existing limitations of the IoT (low power and process-
ing) are well known, making PKI difficult to use in such an
environment. The protocol presented in this paper differs
from the PKI model because it is decentralized - it does not
rely solely and exclusively on a CA, but rather encompasses
a number of reliable, independent elements. Our approach is
more suitable for low-resource devices without any need for
PKI, key certification, trust models, certification authorities,
and so on, which bring with them inherent complexity.

4 IMPLEMENTATION OF PTASC
We decided to construct the new protocol based on the ZRTP
for end-to-end communication because of the support given
by the development community and the existence of a com-
plete ZRTP implementations with well known stable libraries
as dependencies. For this reason, we choose the library ZRT-
PCPP.

The ZRTPCPP implementation is deeply connected toGNU
ccRTP that is the software responsible for accept connections,
differentiatemessages from different protocols and pass them
to the respective handler. The RTP protocol uses UDP pro-
tocol, so, at the application level, there are mechanisms to
ensure the reliability and filter out of order packets. To sep-
arate these two packages, we create a package called DTP,
that emulates the GNU ccRTP to facilitate the connection
with the ZrtpQueue.

In comparison with GNU ccRTP, the DTP differs in the
transport protocol, because it uses TCP instead of UDP. We
choose TCP because the protocol that we are developing
is directed to data, so, if a packet is lost, it needs to be re-
transmitted. As we use TCP, we do not need to implement
reliability mechanism at the application level (as it happens
on the RTP) because TCP already provides reliability mecha-
nisms implemented [27].

The DTP package needs to be able to receive and manage
many connections at the same time. Without this capability,



ICDCN ’19, January 4–7, 2019, Navi mumbai, India Patrícia R. Sousa et al.

the protocol would be limited to communicate with only
one device at a time, that would bring a negative impact on
performance when a device needs to talk with several peers.
This type of necessity is common to servers, where there
are two main architecture types of servers: multiplex [20]
servers andmultithread [7] servers. Themultiplex server [20]
is an event-driven approach, where asynchronous I/O is used
and a unique process is responsible for multiple connections.
The server changes between the connections when exists
an event to process. The multithread [7] approach basically
associates each incoming connection with a separate thread,
where synchronous blocking I/O is the natural way of dealing
with I/O. Given these two options, we opted by the multi-
plex server, because of the low memory capacity of an IoT
device, which is not compatible with a multithread server.
As we needed to implement a multiplex server, it was neces-
sary to find a way to implement the non-blocking I/O. We
use the native function select to implement the necessary
asynchronous mechanisms, allowing a program to monitor
multiple file descriptors, waiting until one or more of the file
descriptors become "ready" for some class of I/O operation.
The DTP package is organized in four classes: DtpServer,

DtpHandler, DtpConnection andWorker (Figure 2).

Figure 2: Relationship diagramof the newprotocol im-
plementation.

The DtpServer has the role of Facade class, allowing the
programmer to define user callbacks, handlers for packets
and connections with other peers. The DtpHandler manages
the connections and workers. This class contains the list of

all connections and locks to manage the multiplex architec-
ture. Furthermore, this class has the get_next_socket function,
that monitors the different connections using the select. The
Worker class is the base for the multiplex server, it has his
own thread and will process which of the events identified
by the DtpHandler.
Each one of the connections has an instance of the Dtp-

Connection associated. This instance keeps the context of
the connection. This context has the different pools of pack-
ages, from the cryptographic context to the communication
channels. This type of structure is equivalent to the GNU
ccRTP. The DtpConnection is the class responsible for the
connection with the ZrtpQueue and each DtpConnection has
one instance of a ZrtpQueue.
To structure the packages of the DTP, we decided to use

as starting point, a ZRTP packet. The ZRTP packet has field
constant on all ZRTP packets, called ZRTP magic number,
which simply serves to identify the protocol. We use this
approach to structure the DTP packets. We kept the same
header structure of a ZRTP packet, and changed ZRTP magic
number value to differentiate protocols. With this type of
structure, we can add more protocols sharing the same con-
nection channel.
After the implementation of the DTP package and after

trying to join the GNU ZRTP CORE with the DTP, we real-
ized that, on the GNU ZRTP CORE, there were dependen-
cies related to GNU ccRTP, on functions involved on threads
and thread concurrent synchronization. These dependencies
problems were possible to solve using Commoncpp [15], a
small library which is a dependent of GNU ccRTP.
Beyond the DTP implementation, we need to create a

system that uses the SRTP keys generated on the ZRTP to
transmit information safely on the same channel. In simi-
larity to the GNU ccRTP, we associate a crypto context to
each communication channel and cipher the packets on the
channel using AES-CBC. The use of this algorithm was due
to the existence of an implementation on the GNU ZRTP
CORE and so, do not increase redundant code.

Our protocol can be expanded by a programmer and inte-
grated on an application. We allowed the developer to over-
ride the functions that process and receive data packages
and all user callbacks that are hooked to the ZRTP protocol.
With all of the above components, we were able to build

a new protocol to the IoT world that offers a reliable form to
share information securely, on a peer-to-peer way, without
the participation of any other device, besides the sender and
the receiver.

5 SECURITY ANALYSIS
In this section we define a Threat Model and we define some
claims and the respective theoretical proofs for the claims.



pTASC: Trustable Autonomous Secure Communications ICDCN ’19, January 4–7, 2019, Navi mumbai, India

5.1 Threat Model
It is possible for a collision of the SAS to occur, enabling an
MitM, i.e., an honest user can have a 4 characters size SAS key,
and the attacker can get the same key and thus intercept the
call through an MitM [32]. However, this can be prevented
by increasing the SAS size. This is performed, as shown in
the RFC of ZRTP [38], by increasing the cipher key size (the
AES key), producing a new SAS with a greater size. The
increase in size adds security regarding the communication
cipher and also makes the collision of the SAS harder for an
attacker.
Replay attack is an attack that obtains information from

one communication and tries to set the information in a next
round of the communication. For example, if A is exchanging
a file with B, an attacker called Mallory can send a piece of
the previous file exchanged to try to corrupt the protocol. To
solve this problem, pTASC uses the properties key continu-
ity and forward secrecy to generate a new session key and
make obsolete packets and ciphered information exchanged
previously. This makes the protocol secure against replay
attacks because, if an attacker performs this type of attack,
A and B will just ignore the information sent and continue
the ongoing transfer.
Traceability problems, were first proposed by João S. Re-

sende et al. [28], where the attacker leaks information from
VoIP metadata during the communication with the pears.
This problem is relevant in VoIP scenarios because there is
no need to use this type of metadata when we trust in a third
party server. In our scenario, we need to index the informa-
tion in the local cache, because we do not have information
for other sources (peer-to-peer solution). This way, an at-
tacker can obtain metadata information but, for the best of
our knowledge, there is no solution to mitigate this metadata
leakage, while maintaining a scenario without a trusted third
party.

A LLC mitigates the MitM by the attackers, however, it is
possible for them to try to intercept the communication and
exchange a key with one of the devices. As we use Infrared,
it limits the range of distance of the attacker to exchange
data with the "trustable" devices. This scenario assumes that
all participants are located in the same room; and all the
participants trust each other a priori.

5.2 Attack Scenarios
In this subsection, we measure the security of the proposed
solution against different scenarios of attack. This way, we
are able to classify the security of the protocol based on a
set of theorems, adapting those used by Afifi et al. [3] to
prove that an authentication protocol is secure. To complete
the evaluation, we also add new theorems.

Claim 1. Our protocol is secure against de-
synchronization attacks.

Proof. The key to avoiding de-synchronization attacks
is represented in the figure 1, in which there is a unique
identifier that is used to store information related to this
client in a database. When the user sends the message F7,
there is an update to the local cache, rotating the keys. This
means that just when both parties have exchanged correctly
the information, they update the information. If, for example,
the disk corrupts the information or another type of problem
occurs, both devices, when performing the pre-shared mode,
will not be capable of negotiating a session key and will
drop to the first stage, where a new DH key exchange is
performed.

□

Claim 2. The proposed protocol is secure against tag im-
personation attacks, based on the security provided by the
combination of PRNG’s and locally stored secret keys.

Proof. Each device has one unique identifier (as stated in
the figure 1 in F1 and F3) that is used for communication with
any other device. If an attacker obtains device A’s ID, he may
attempt to send A’s ID to a device B, impersonating device
A, but he will be unable to do it. As explained previously, we
have an identifier file that caches symmetric key material
used to compute secret session keys, and these values change
with each session. So, when the attacker tries to impersonate
device A, it is impossible for him to pass undetected to device
B because, when he attempts to generate a new key with the
victim, the secret keys are not the same as his, and device B
drops the communication. In the first iteration, he will have
an authenticated channel, so he cannot complete the attack,
regardless.

□

Claim 3. Our protocol is secure against replay attacks.

Proof. Replay attack is an attack that obtains information
from one communication and tries to set the information
in a next round of the communication. For example, if A is
exchanging a file with B, Mallory can send a piece of the
previous file exchanged to try to corrupt the protocol. To
solve this problem, pTASC uses the properties key continu-
ity and forward secrecy to generate a new session key and
make obsolete packets and ciphered information exchanged
previously. This makes the protocol secure against replay
attacks because, if an attacker performs this type of attack,
A and B will just ignore the information sent and continue
the ongoing transfer.

□

Claim 4. Resistant to Single Point of Failure.



ICDCN ’19, January 4–7, 2019, Navi mumbai, India Patrícia R. Sousa et al.

Proof. In the case of PKI implementations, there is a third
party, a CA, that checks the validity of the certificates. The
CA establishes a link between public keys and identities
people or organizations. Therefore, customers have to rely
on a third party.

The certification authority represents a SPOF, as once one
is compromised, all peers are compromised as well. For exam-
ple, Let’s Encrypt has issued 15,270 "PayPal" certificates [9]
to sites used for phishing. A failure in this type of systems
compromises several entities.

Regarding pTASC, while facing an attack it can only com-
promise at most one of the participants, not both, because it
is a decentralized solution.

□

6 EVALUATION
In this section we will show the performance tests that we
made of our protocol with a test case. For all measurements,
10 samples were always taken so that we can obtain a mean
and a standard deviation of the values obtained in several
connection attempts. The results were only at the level of
provisioning, because here we are not interested in the data
exchange cipher time, only the time until the moment of the
SAS exchange.

This section also presents a comparison between the per-
formance of our scenario versus a centralized solution such
as PKI systems.

6.1 Setup
To test the operation of the protocol in the real world, we
create an IoT environment as shown in Figure 3, where two
Raspberry Pi 3 Model B, running Raspbian Stretch [12], are
connected over an ad hoc network. Infrared sensors were
used, namely an IR Transmitter (KY-005) and an IR Receiver
(KY-022), to exchange the SAS key.

Figure 3: Ad hoc Network setup

6.2 Results
With the previous setup wemade a test to evaluate the secure
session establishment runtime.

The Infrared was implemented with pigpio 2. As we have
an IR Receiver and an IR Transmitter, we make two ex-
changes from the Alice to Bob and simultaneously, from
Bob to Alice. We collected ten time samples of one of the
communications, with an average of time to exchange of
0.19ms ± 0.04.
Finally, to establish the secure session, we measure the

runtime since the start of the protocol until the creation of
a secure channel, using the function gettimeofday from the
native library sys/time.h. We collected ten time samples, with
an average of time to connect of 1050ms ± 58.5.
In all, we have a mean runtime of 1050.2ms on the first

connection.
Figure 4 shows the PKI scenario to be evaluated. Here,

we have a client, represented by a local Raspberry Pi, and
a server hosted in a remote Raspberry Pi provisioned with
DigiCert certificates. The remote certificates support the
OCSP stapling that removes the complexity of customers
communicating with the CA. The TLS Server periodically
questions the OCSP responder about the validity of its own
certificate and caches the response. The OCSP responder
returns an OCSP response, which is (directly or indirectly)
signed by the CA that issued the certificates. The TLS client
can treat this stapled OCSP response in the same way, i.e.,
the certificate should only be used if it has a valid timestamp
and signature.

Figure 4: Scenario 2 - Provisioning with PKI

During the TLS handshake, the client announces support
for OCSP stapling to the server. In turn, the server activates

2pigpio [26] is a library for the Raspberry which allows control of the
General Purpose Input Outputs (GPIO) library and the time was measured
with a SAS exchange



pTASC: Trustable Autonomous Secure Communications ICDCN ’19, January 4–7, 2019, Navi mumbai, India

the Certificate Status flag if it has supports for it. This pro-
cess is shown in step 1 in Figure 4. During step 2, an SSL
connection is established between Alice and Bob. The goal
is to measure the certificate’s OCSP (state) check runtime on
top of the runtime added by SSL connection handshake.

To measure the runtime of this scenario, we used s_client
and s_server binaries from the OpenSSL library. We ran
s_server service on the server machine, and made the s_client
run on the local machine, so that we could obtain both the
OCSP information and server/client handshake results. With
this in place, we obtained an average runtime of 380ms±11.6
across the 10 iterations.

6.3 Discussion
The runtime of our system increases 64% comparatively to
PKI systems. The use of an infrared channel behaving as LLC
does not add much overhead to the overall runtime. This
means that the time of 1050ms ± 58.5 is the approximate
base time, and other methods for LLC may be added. That is,
if the Infrared channel is changed by another method like
NFC, for example, we have a time of 1050ms ± 58.5 + δ , the
δ being the execution time of the NFC.

This inefficient scenario is related with the change for TCP
connections and the packet loss from the ad hoc network.
Also, the use of PKI was tested based in high density cer-
tificate network. This means that the runtime is important
and everything is optimized to perform in the smallest time
possible, compared to our implementations that is deployed
in a local scenario and does not uses optimized solutions.

7 CONCLUSIONS AND FUTUREWORK
Compared to the traditional environments of PKI systems
(Citizen Card or HTTP servers), the IoT systems incur in
limitations from battery and sometimes Internet connec-
tions. Our first approach was to analyze a home environment
where we could secure the systems based on the home trust.
Based on this, we could empower the IoT devices without the
need of expensive computations to communicate with the
outside world, but at the same time infer security by remov-
ing the connection with the Internet. This ad hoc network,
without access to third party services improves security by
mitigating the attack surface.
We have presented a novel solution for the provisioning

and communication between IoT devices that makes use of a
modified secure key exchange protocol, in which the audio
channel was replaced with data negotiation over a LLC.
We provide an evaluation of the provisioning phase on

both pTASC and PKI-based systems. The experiments were
performed in a realistic environment so that we could present
meaningful results that are close to real-world usage. When

comparing pTASC with PKI-based systems, our system ex-
hibits a runtime overhead of 64%. However, we have a de-
centralized solution, which guarantees some key properties,
such as security and independence and solving the SPOF
problem.
The system uses a LLC for SAS comparison. Although

we have used Infrared, we can adapt other mechanisms like
Bluetooth, NFC or other technologies of limited location. A
combination of these methods is also possible.
In future work, we plan to deploy this architecture in a

real environment to fully understand the impact on the IoT
devices in a smart-city concept.

ACKNOWLEDGMENTS
The work of Patrícia R. Sousa and Luís Antunes was sup-
ported by Project "NanoSTIMA: Macro-to-Nano Human
Sensing: Towards Integrated Multimodal Health Monitor-
ing and Analytics/NORTE-01-0145-FEDER-000016", financed
by the North Portugal Regional Operational Programme
(NORTE 2020), under the PORTUGAL 2020 Partnership
Agreement, and through the European Regional Develop-
ment Fund (ERDF).
João S. Resende is supported by the research grant

PD/BD/128149/2016, provided by the Portuguese national
funding agency for science, research and technology, Fun-
dação para a Ciência e Tecnologia (FCT), within the scope
of Operational Program Human Capital (POCH), supported
by the European Social Fund and by national funds from
MCTES.

The work of Rolando Martins was supported by a scholar-
ship from the Fundação para a Ciência e Tecnologia (FCT),
Portugal (scholarship number
SFRH/BPD/115408/2016)

REFERENCES
[1] Nidal Aboudagga, Mohamed Tamer Refaei, Mohamed Eltoweissy,

Luiz A. DaSilva, and Jean-Jacques Quisquater. 2005. Authentication
Protocols for Ad Hoc Networks: Taxonomy and Research Issues. In
Proceedings of the 1st ACM International Workshop on Quality of Service
&Amp; Security in Wireless and Mobile Networks (Q2SWinet ’05). ACM,
New York, NY, USA, 96–104. https://doi.org/10.1145/1089761.1089777

[2] Carlisle Adams and Steve Lloyd. 2002. Understanding PKI: Concepts,
Standards, and Deployment Considerations (2nd ed.). Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA.

[3] Mohamed Hossam Afifi, Liang Zhou, Shantanu Chakrabartty, and
Jian Ren. 2018. Dynamic Authentication Protocol Using Self-Powered
Timers for Passive Internet of Things. IEEE Internet of Things Journal
5 (2018), 2927–2935.

[4] N Asokan and Philip Ginzboorg. 2000. Key agreement in ad hoc
networks. Computer communications 23, 17 (2000), 1627–1637.

[5] Dirk Balfanz, Diana K. Smetters, Paul Stewart, and H. Chi Wong. 2002.
Talking to Strangers: Authentication in Ad-Hoc Wireless Networks.
In NDSS. Network and Distributed System Security Symposium, San
Diego; CA; USA., 13.

https://doi.org/10.1145/1089761.1089777


ICDCN ’19, January 4–7, 2019, Navi mumbai, India Patrícia R. Sousa et al.

[6] M. Baugher, D. McGrew, M. Naslund, E. Carrara, and K. Norrman. 2004.
The Secure Real-time Transport Protocol (SRTP). RFC 3711. RFC Editor.
http://www.rfc-editor.org/rfc/rfc3711.txt http://www.rfc-editor.org/
rfc/rfc3711.txt [Online; Accessed 16-06-2018].

[7] Ernest S Bender and Chun-Kwan K Yee. 2007. Method and apparatus
for managing thread execution in a multithread application. (May 8
2007). US Patent 7,216,346.

[8] Jan Bosch. 1998. Design Patterns as Language Constructs. Journal of
Object-Oriented Programming 11 (1998), 18–32.

[9] Bill Brenner. 2017. Let’s Encrypt issues certs to ’PayPal’ phishing
sites: how to protect yourself (2017)). (2017). http://bit.ly/2i7Z4bT
http://bit.ly/2i7Z4bT, [Online; Accessed 19-05-2017].

[10] I.R. Buhan, J.M. Doumen, Pieter H. Hartel, and Raymond N.J. Veldhuis.
2006. Feeling is Believing: a location limited channel based on grip
pattern biometrics and cryptanalysis. Number 06-29 in CTIT technical
reports series. Centrum voor Telematica en Informatie Technologie,
Centrum voor Telematica en Informatie Technologie. Imported from
CTIT.

[11] Christian Huitema Daniel Kaiser. 2016. Device Pairing Using Short
Authentication Strings. (2016). https://github.com/jitsi/zrtp4j https:
//tools.ietf.org/html/draft-ietf-dnssd-pairing-01, [Online; Accessed 21-
04-2017].

[12] Raspbian Developers. 2018. Raspbian. (2018). https://www.raspbian.
org/ https://www.raspbian.org/ [Online; Accessed 16-06-2018].

[13] Werner Dittmann. 2018. ZRTPCPP. (2018). https://github.com/
wernerd/ZRTPCPP https://github.com/wernerd/ZRTPCPP [Online;
Accessed 16-06-2018].

[14] Inc Free Software Foundation. 2018. GNU ccRTP. (2018). https:
//www.gnu.org/software/ccrtp/ https://www.gnu.org/software/ccrtp/
[Online; Accessed 16-06-2018].

[15] Inc Free Software Foundation. 2018. GNU [u]Common C++. (2018).
https://www.gnu.org/software/commoncpp/ https://www.gnu.org/
software/commoncpp/ [Online; Accessed 16-06-2018].

[16] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and
Marimuthu Palaniswami. 2013. Internet of Things (IoT): A vision,
architectural elements, and future directions. Future generation
computer systems 29, 7 (2013), 1645–1660.

[17] F Hao. 2016. Schnorr NIZK Proof: Non-interactive Zero Knowledge
Proof for Discrete Logarithm version 5. Online]. Tersedia: https://tools.
ietf. org/html/draft-hao-schnorr-05 (2016).

[18] Feng Hao. 2017. J-PAKE: Password-Authenticated Key Exchange by
Juggling. (2017).

[19] Feng Hao and Peter YA Ryan. 2008. Password authenticated key
exchange by juggling. In International Workshop on Security Protocols.
Springer, 159–171.

[20] Kazuhiko Isoyama. 2007. Multiplex server system and server multi-
plexing method. (Sept. 20 2007). US Patent App. 11/723,499.

[21] jitsi. 2018. zrtp4j. (2018). https://github.com/jitsi/zrtp4j https://github.
com/jitsi/zrtp4j [Online; Accessed 16-06-2018].

[22] Jiejun Kong, Petros Zerfos, Haiyun Luo, Songwu Lu, and Lixia Zhang.
2001. Providing Robust and Ubiquitous Security Support for Mobile
Ad Hoc Networks.. In icnp, Vol. 1. Citeseer, 251–260.

[23] Jean Lancrenon, Marjan Škrobot, and Qiang Tang. 2016. Two more
efficient variants of the j-pake protocol. In International Conference on
Applied Cryptography and Network Security. Springer, 58–76.

[24] S. Martini. 2018. Session Key Retrieval in J-PAKE Implementations
of OpenSSL and OpenSSH. (2010). (2018). https://github.com/jitsi/
zrtp4j http://seb.dbzteam.org/crypto/jpake-session-key-retrieval.pdf,
[Online; Accessed 16-06-2018].

[25] Kim Thuat Nguyen, Maryline Laurent, and Nouha Oualha. 2015. Sur-
vey on secure communication protocols for the Internet of Things. Ad
Hoc Networks 32 (2015), 17–31.

[26] pigpio. 2018. The pigpio library (2012). http://abyz.me.uk/rpi/pigpio/
index.html. (2018). [Online; Accessed 31-07-2018].

[27] Jon Postel. 1981. Transmission Control Protocol. STD 7. RFC Editor.
http://www.rfc-editor.org/rfc/rfc793.txt http://www.rfc-editor.org/rfc/
rfc793.txt.

[28] João S Resende, Patrícia R Sousa, and Luís Antunes. 2018. Evaluat-
ing the Privacy Properties of Secure VoIP Metadata. In International
Conference on Trust and Privacy in Digital Business. Springer, 57–68.

[29] Dominik Schürmann, Fabian Kabus, Gregor Hildermeier, and LarsWolf.
2016. CVE-2016-6271. Available from MITRE, CVE-ID CVE-2016-
6271.. (Feb. 2016). https://nvd.nist.gov/vuln/detail/CVE-2016-6271
https://nvd.nist.gov/vuln/detail/CVE-2016-6271 [Online; Accessed 16-
06-2018].

[30] Dong Hwi Seo and P Sweeney. 1999. Simple authenticated key agree-
ment algorithm. Electronics Letters 35, 13 (1999), 1073–1074.

[31] SilentCircle. 2018. ZRTPCPP. (2018). https://github.com/SilentCircle/
ZRTPCPP https://github.com/SilentCircle/ZRTPCPP [Online; Ac-
cessed 16-06-2018].

[32] Dorgham Sisalem, John Floroiu, Jiri Kuthan, Ulrich Abend, and Hen-
ning Schulzrinne. 2009. SIP security. John Wiley & Sons.

[33] Amir Spahić, Michael Kreutzer, Martin Kähmer, and Sumith Chan-
dratilleke. 2005. Pre-authentication using infrared. In Privacy, Security
and Trust within the Context of Pervasive Computing. Springer, 105–112.

[34] Peter Thermos and Ari Takanen. 2007. Securing VoIP Networks: Threats,
Vulnerabilities, and Countermeasures. Addison-Wesley Professional.

[35] Mohsen Toorani. 2014. Security analysis of J-PAKE. In Computers
and Communication (ISCC), 2014 IEEE Symposium on. IEEE, Funchal,
Portugal, 1–6.

[36] Serge Vaudenay. 2005. Secure Communications over Insecure Channels
Based on Short Authenticated Strings. In Proceedings of the 25th An-
nual International Conference on Advances in Cryptology (CRYPTO’05).
Springer-Verlag, Berlin, Heidelberg, 309–326. https://doi.org/10.1007/
11535218_19

[37] P. Zimmermann, A. Johnston, and J. Callas. 2011. ZRTP: Media Path Key
Agreement for Unicast Secure RTP. RFC 6189. RFC Editor. http://www.
rfc-editor.org/rfc/rfc6189.txt http://www.rfc-editor.org/rfc/rfc6189.txt
[Online; Accessed 16-06-2018].

[38] Phil Zimmermann, Alan Johnston, and Jon Callas. 2011. ZRTP: Media
path key agreement for unicast secure RTP. (2011).

http://www.rfc-editor.org/rfc/rfc3711.txt
http://www.rfc-editor.org/rfc/rfc3711.txt
http://www.rfc-editor.org/rfc/rfc3711.txt
http://bit.ly/2i7Z4bT
http://bit.ly/2i7Z4bT
https://github.com/jitsi/zrtp4j
https://tools.ietf.org/html/draft-ietf-dnssd-pairing-01
https://tools.ietf.org/html/draft-ietf-dnssd-pairing-01
https://www.raspbian.org/
https://www.raspbian.org/
https://www.raspbian.org/
https://github.com/wernerd/ZRTPCPP
https://github.com/wernerd/ZRTPCPP
https://github.com/wernerd/ZRTPCPP
https://www.gnu.org/software/ccrtp/
https://www.gnu.org/software/ccrtp/
https://www.gnu.org/software/ccrtp/
https://www.gnu.org/software/commoncpp/
https://www.gnu.org/software/commoncpp/
https://www.gnu.org/software/commoncpp/
https://github.com/jitsi/zrtp4j
https://github.com/jitsi/zrtp4j
https://github.com/jitsi/zrtp4j
https://github.com/jitsi/zrtp4j
https://github.com/jitsi/zrtp4j
http://seb.dbzteam.org/crypto/jpake-session-key-retrieval.pdf
http://abyz.me.uk/rpi/pigpio/index.html
http://abyz.me.uk/rpi/pigpio/index.html
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc793.txt
https://nvd.nist.gov/vuln/detail/CVE-2016-6271
https://nvd.nist.gov/vuln/detail/CVE-2016-6271
https://github.com/SilentCircle/ZRTPCPP
https://github.com/SilentCircle/ZRTPCPP
https://github.com/SilentCircle/ZRTPCPP
https://doi.org/10.1007/11535218_19
https://doi.org/10.1007/11535218_19
http://www.rfc-editor.org/rfc/rfc6189.txt
http://www.rfc-editor.org/rfc/rfc6189.txt
http://www.rfc-editor.org/rfc/rfc6189.txt

	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Premises
	1.3 Outline

	2 State of the art
	2.1 ZRTP protocol
	2.2 J-PAKE
	2.3 Device Pairing Using Short Authentication Strings
	2.4 Ad-hoc Authentication

	3 pTASC Overview
	4 Implementation of pTASC
	5 Security Analysis
	5.1 Threat Model
	5.2 Attack Scenarios

	6 Evaluation
	6.1 Setup
	6.2 Results
	6.3 Discussion

	7 Conclusions and Future Work
	Acknowledgments
	References

